Ga naar inhoud

Functionele validators

This module contains related classes and functions for validation.

ModelAfterValidatorWithoutInfo module-attribute

ModelAfterValidatorWithoutInfo = Callable[
    [_ModelType], _ModelType
]

A @model_validator decorated function signature. This is used when mode='after' and the function does not have info argument.

ModelAfterValidator module-attribute

ModelAfterValidator = Callable[
    [_ModelType, ValidationInfo], _ModelType
]

A @model_validator decorated function signature. This is used when mode='after'.

AfterValidator dataclass

AfterValidator(
    func: (
        NoInfoValidatorFunction | WithInfoValidatorFunction
    ),
)

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#annotated-validators

A metadata class that indicates that a validation should be applied after the inner validation logic.

Attributes:

Name Type Description
func NoInfoValidatorFunction | WithInfoValidatorFunction

The validator function.

Example
from typing_extensions import Annotated

from pydantic import AfterValidator, BaseModel, ValidationError

MyInt = Annotated[int, AfterValidator(lambda v: v + 1)]

class Model(BaseModel):
    a: MyInt

print(Model(a=1).a)
#> 2

try:
    Model(a='a')
except ValidationError as e:
    print(e.json(indent=2))
    '''
    [
      {
        "type": "int_parsing",
        "loc": [
          "a"
        ],
        "msg": "Input should be a valid integer, unable to parse string as an integer",
        "input": "a",
        "url": "https://errors.pydantic.dev/2/v/int_parsing"
      }
    ]
    '''

BeforeValidator dataclass

BeforeValidator(
    func: (
        NoInfoValidatorFunction | WithInfoValidatorFunction
    ),
)

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#annotated-validators

A metadata class that indicates that a validation should be applied before the inner validation logic.

Attributes:

Name Type Description
func NoInfoValidatorFunction | WithInfoValidatorFunction

The validator function.

Example
from typing_extensions import Annotated

from pydantic import BaseModel, BeforeValidator

MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)]

class Model(BaseModel):
    a: MyInt

print(Model(a=1).a)
#> 2

try:
    Model(a='a')
except TypeError as e:
    print(e)
    #> can only concatenate str (not "int") to str

PlainValidator dataclass

PlainValidator(
    func: (
        NoInfoValidatorFunction | WithInfoValidatorFunction
    ),
)

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#annotated-validators

A metadata class that indicates that a validation should be applied instead of the inner validation logic.

Attributes:

Name Type Description
func NoInfoValidatorFunction | WithInfoValidatorFunction

The validator function.

Example
from typing_extensions import Annotated

from pydantic import BaseModel, PlainValidator

MyInt = Annotated[int, PlainValidator(lambda v: int(v) + 1)]

class Model(BaseModel):
    a: MyInt

print(Model(a='1').a)
#> 2

WrapValidator dataclass

WrapValidator(
    func: (
        NoInfoWrapValidatorFunction
        | WithInfoWrapValidatorFunction
    ),
)

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#annotated-validators

A metadata class that indicates that a validation should be applied around the inner validation logic.

Attributes:

Name Type Description
func NoInfoWrapValidatorFunction | WithInfoWrapValidatorFunction

The validator function.

from datetime import datetime

from typing_extensions import Annotated

from pydantic import BaseModel, ValidationError, WrapValidator

def validate_timestamp(v, handler):
    if v == 'now':
        # we don't want to bother with further validation, just return the new value
        return datetime.now()
    try:
        return handler(v)
    except ValidationError:
        # validation failed, in this case we want to return a default value
        return datetime(2000, 1, 1)

MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)]

class Model(BaseModel):
    a: MyTimestamp

print(Model(a='now').a)
#> 2032-01-02 03:04:05.000006
print(Model(a='invalid').a)
#> 2000-01-01 00:00:00

ModelWrapValidatorHandler

Bases: ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]

@model_validator decorated function handler argument type. This is used when mode='wrap'.

ModelWrapValidatorWithoutInfo

Bases: Protocol[_ModelType]

A @model_validator decorated function signature. This is used when mode='wrap' and the function does not have info argument.

ModelWrapValidator

Bases: Protocol[_ModelType]

A @model_validator decorated function signature. This is used when mode='wrap'.

FreeModelBeforeValidatorWithoutInfo

Bases: Protocol

A @model_validator decorated function signature. This is used when mode='before' and the function does not have info argument.

ModelBeforeValidatorWithoutInfo

Bases: Protocol

A @model_validator decorated function signature. This is used when mode='before' and the function does not have info argument.

FreeModelBeforeValidator

Bases: Protocol

A @model_validator decorated function signature. This is used when mode='before'.

ModelBeforeValidator

Bases: Protocol

A @model_validator decorated function signature. This is used when mode='before'.

InstanceOf dataclass

InstanceOf(__hash__=object.__hash__)

Generic type for annotating a type that is an instance of a given class.

Example
from pydantic import BaseModel, InstanceOf

class Foo:
    ...

class Bar(BaseModel):
    foo: InstanceOf[Foo]

Bar(foo=Foo())
try:
    Bar(foo=42)
except ValidationError as e:
    print(e)
    """
    [
    │   {
    │   │   'type': 'is_instance_of',
    │   │   'loc': ('foo',),
    │   │   'msg': 'Input should be an instance of Foo',
    │   │   'input': 42,
    │   │   'ctx': {'class': 'Foo'},
    │   │   'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of'
    │   }
    ]
    """

SkipValidation dataclass

SkipValidation(__hash__=object.__hash__)

If this is applied as an annotation (e.g., via x: Annotated[int, SkipValidation]), validation will be skipped. You can also use SkipValidation[int] as a shorthand for Annotated[int, SkipValidation].

This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes, and know that it is safe to skip validation for one or more of the fields.

Because this converts the validation schema to any_schema, subsequent annotation-applied transformations may not have the expected effects. Therefore, when used, this annotation should generally be the final annotation applied to a type.

field_validator

field_validator(
    field: str,
    /,
    *fields: str,
    mode: FieldValidatorModes = "after",
    check_fields: bool | None = None,
) -> Callable[[Any], Any]

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#field-validators

Decorate methods on the class indicating that they should be used to validate fields.

Example usage:

from typing import Any

from pydantic import (
    BaseModel,
    ValidationError,
    field_validator,
)

class Model(BaseModel):
    a: str

    @field_validator('a')
    @classmethod
    def ensure_foobar(cls, v: Any):
        if 'foobar' not in v:
            raise ValueError('"foobar" not found in a')
        return v

print(repr(Model(a='this is foobar good')))
#> Model(a='this is foobar good')

try:
    Model(a='snap')
except ValidationError as exc_info:
    print(exc_info)
    '''
    1 validation error for Model
    a
      Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
    '''

For more in depth examples, see Field Validators.

Parameters:

Name Type Description Default
field str

The first field the field_validator should be called on; this is separate from fields to ensure an error is raised if you don't pass at least one.

required
*fields str

Additional field(s) the field_validator should be called on.

()
mode FieldValidatorModes

Specifies whether to validate the fields before or after validation.

'after'
check_fields bool | None

Whether to check that the fields actually exist on the model.

None

Returns:

Type Description
Callable[[Any], Any]

A decorator that can be used to decorate a function to be used as a field_validator.

Raises:

Type Description
PydanticUserError
  • If @field_validator is used bare (with no fields).
  • If the args passed to @field_validator as fields are not strings.
  • If @field_validator applied to instance methods.
Source code in pydantic/functional_validators.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def field_validator(
    field: str,
    /,
    *fields: str,
    mode: FieldValidatorModes = 'after',
    check_fields: bool | None = None,
) -> Callable[[Any], Any]:
    """Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#field-validators

    Decorate methods on the class indicating that they should be used to validate fields.

    Example usage:
    ```py
    from typing import Any

    from pydantic import (
        BaseModel,
        ValidationError,
        field_validator,
    )

    class Model(BaseModel):
        a: str

        @field_validator('a')
        @classmethod
        def ensure_foobar(cls, v: Any):
            if 'foobar' not in v:
                raise ValueError('"foobar" not found in a')
            return v

    print(repr(Model(a='this is foobar good')))
    #> Model(a='this is foobar good')

    try:
        Model(a='snap')
    except ValidationError as exc_info:
        print(exc_info)
        '''
        1 validation error for Model
        a
          Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
        '''
    ```

    For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).

    Args:
        field: The first field the `field_validator` should be called on; this is separate
            from `fields` to ensure an error is raised if you don't pass at least one.
        *fields: Additional field(s) the `field_validator` should be called on.
        mode: Specifies whether to validate the fields before or after validation.
        check_fields: Whether to check that the fields actually exist on the model.

    Returns:
        A decorator that can be used to decorate a function to be used as a field_validator.

    Raises:
        PydanticUserError:
            - If `@field_validator` is used bare (with no fields).
            - If the args passed to `@field_validator` as fields are not strings.
            - If `@field_validator` applied to instance methods.
    """
    if isinstance(field, FunctionType):
        raise PydanticUserError(
            '`@field_validator` should be used with fields and keyword arguments, not bare. '
            "E.g. usage should be `@validator('<field_name>', ...)`",
            code='validator-no-fields',
        )
    fields = field, *fields
    if not all(isinstance(field, str) for field in fields):
        raise PydanticUserError(
            '`@field_validator` fields should be passed as separate string args. '
            "E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
            code='validator-invalid-fields',
        )

    def dec(
        f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
    ) -> _decorators.PydanticDescriptorProxy[Any]:
        if _decorators.is_instance_method_from_sig(f):
            raise PydanticUserError(
                '`@field_validator` cannot be applied to instance methods', code='validator-instance-method'
            )

        # auto apply the @classmethod decorator
        f = _decorators.ensure_classmethod_based_on_signature(f)

        dec_info = _decorators.FieldValidatorDecoratorInfo(fields=fields, mode=mode, check_fields=check_fields)
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    return dec

model_validator

model_validator(
    *, mode: Literal["wrap", "before", "after"]
) -> Any

Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#model-validators

Decorate model methods for validation purposes.

Example usage:

from typing_extensions import Self

from pydantic import BaseModel, ValidationError, model_validator

class Square(BaseModel):
    width: float
    height: float

    @model_validator(mode='after')
    def verify_square(self) -> Self:
        if self.width != self.height:
            raise ValueError('width and height do not match')
        return self

s = Square(width=1, height=1)
print(repr(s))
#> Square(width=1.0, height=1.0)

try:
    Square(width=1, height=2)
except ValidationError as e:
    print(e)
    '''
    1 validation error for Square
      Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
    '''

For more in depth examples, see Model Validators.

Parameters:

Name Type Description Default
mode Literal['wrap', 'before', 'after']

A required string literal that specifies the validation mode. It can be one of the following: 'wrap', 'before', or 'after'.

required

Returns:

Type Description
Any

A decorator that can be used to decorate a function to be used as a model validator.

Source code in pydantic/functional_validators.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
def model_validator(
    *,
    mode: Literal['wrap', 'before', 'after'],
) -> Any:
    """Usage docs: https://pydantic.com.cn/2.9/concepts/validators/#model-validators

    Decorate model methods for validation purposes.

    Example usage:
    ```py
    from typing_extensions import Self

    from pydantic import BaseModel, ValidationError, model_validator

    class Square(BaseModel):
        width: float
        height: float

        @model_validator(mode='after')
        def verify_square(self) -> Self:
            if self.width != self.height:
                raise ValueError('width and height do not match')
            return self

    s = Square(width=1, height=1)
    print(repr(s))
    #> Square(width=1.0, height=1.0)

    try:
        Square(width=1, height=2)
    except ValidationError as e:
        print(e)
        '''
        1 validation error for Square
          Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
        '''
    ```

    For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators).

    Args:
        mode: A required string literal that specifies the validation mode.
            It can be one of the following: 'wrap', 'before', or 'after'.

    Returns:
        A decorator that can be used to decorate a function to be used as a model validator.
    """

    def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
        # auto apply the @classmethod decorator
        f = _decorators.ensure_classmethod_based_on_signature(f)
        dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode)
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    return dec

本文总阅读量