コンテンツにスキップ

バリデーター

!!!警告「🚧 作業中」 このページは進行中です。

このページでは、Pydantic でより複雑なカスタム バリデータを作成するためのサンプル スニペットを提供します。

Annotated メタデータでのカスタム バリデータの使用

この例では、Annotated 型にアタッチされたカスタム バリデータを構築し、datetime オブジェクトが指定されたタイムゾーン制約に準拠していることを確認します。

カスタム バリデーターはタイムゾーンの文字列指定をサポートしており、datetime オブジェクトに正しいタイムゾーンがない場合はエラーが発生します。

バリデーターで__get_pydantic_core_schema__使用して、アノテーション付き型 (この場合は datetime) のスキーマをカスタマイズします。これにより、カスタム検証ロジックを追加できるようになります。特に、datetime のデフォルトのpydantic検証の前後の両方で操作を実行できるように、 wrapバリデーター関数を使用しています。

import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable, Optional

import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated

from pydantic import (
    GetCoreSchemaHandler,
    PydanticUserError,
    TypeAdapter,
    ValidationError,
)


@dataclass(frozen=True)
class MyDatetimeValidator:
    tz_constraint: Optional[str] = None

    def tz_constraint_validator(
        self,
        value: dt.datetime,
        handler: Callable,  # (1)!
    ):
        """Validate tz_constraint and tz_info."""
        # handle naive datetimes
        if self.tz_constraint is None:
            assert (
                value.tzinfo is None
            ), 'tz_constraint is None, but provided value is tz-aware.'
            return handler(value)

        # validate tz_constraint and tz-aware tzinfo
        if self.tz_constraint not in pytz.all_timezones:
            raise PydanticUserError(
                f'Invalid tz_constraint: {self.tz_constraint}',
                code='unevaluable-type-annotation',
            )
        result = handler(value)  # (2)!
        assert self.tz_constraint == str(
            result.tzinfo
        ), f'Invalid tzinfo: {str(result.tzinfo)}, expected: {self.tz_constraint}'

        return result

    def __get_pydantic_core_schema__(
        self,
        source_type: Any,
        handler: GetCoreSchemaHandler,
    ) -> CoreSchema:
        return core_schema.no_info_wrap_validator_function(
            self.tz_constraint_validator,
            handler(source_type),
        )


LA = 'America/Los_Angeles'
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(LA)])
print(
    ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53

LONDON = 'Europe/London'
try:
    ta.validate_python(
        dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
    )
except ValidationError as ve:
    pprint(ve.errors(), width=100)
    """
    [{'ctx': {'error': AssertionError('Invalid tzinfo: Europe/London, expected: America/Los_Angeles')},
    'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
    'loc': (),
    'msg': 'Assertion failed, Invalid tzinfo: Europe/London, expected: America/Los_Angeles',
    'type': 'assertion_error',
    'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
    """
  1. handler関数は、標準的なpydantic検証で入力を検証するために呼び出すものです。
  2. このラップバリデーターでは、 handler関数を呼び出して、標準のpydantic検証で入力を検証します。

同様の方法で UTC オフセット制約を強制することもできます。 lower_boundupper_boundあると仮定すると、カスタム バリデーターを作成して、 datetimeが定義した境界内に含まれる UTC オフセットを持つことを確認できます。

import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable

import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated

from pydantic import GetCoreSchemaHandler, TypeAdapter, ValidationError


@dataclass(frozen=True)
class MyDatetimeValidator:
    lower_bound: int
    upper_bound: int

    def validate_tz_bounds(self, value: dt.datetime, handler: Callable):
        """Validate and test bounds"""
        assert value.utcoffset() is not None, 'UTC offset must exist'
        assert self.lower_bound <= self.upper_bound, 'Invalid bounds'

        result = handler(value)

        hours_offset = value.utcoffset().total_seconds() / 3600
        assert (
            self.lower_bound <= hours_offset <= self.upper_bound
        ), 'Value out of bounds'

        return result

    def __get_pydantic_core_schema__(
        self,
        source_type: Any,
        handler: GetCoreSchemaHandler,
    ) -> CoreSchema:
        return core_schema.no_info_wrap_validator_function(
            self.validate_tz_bounds,
            handler(source_type),
        )


LA = 'America/Los_Angeles'  # UTC-7 or UTC-8
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(-10, -5)])
print(
    ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53

LONDON = 'Europe/London'
try:
    print(
        ta.validate_python(
            dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
        )
    )
except ValidationError as e:
    pprint(e.errors(), width=100)
    """
    [{'ctx': {'error': AssertionError('Value out of bounds')},
    'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
    'loc': (),
    'msg': 'Assertion failed, Value out of bounds',
    'type': 'assertion_error',
    'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
    """

ネストされたモデルフィールドの検証

ここでは、バリデーターが親モデルのデータを利用する、ネストされたモデルのフィールドを検証する 2 つの方法を示します。

この例では、各ユーザーのパスワードが親モデルで指定された禁止パスワードのリストに含まれていないことを確認するバリデーターを構築します。

これを行う 1 つの方法は、外部モデルにカスタム バリデータを配置することです。

from typing import List

from typing_extensions import Self

from pydantic import BaseModel, ValidationError, model_validator


class User(BaseModel):
    username: str
    password: str


class Organization(BaseModel):
    forbidden_passwords: List[str]
    users: List[User]

    @model_validator(mode='after')
    def validate_user_passwords(self) -> Self:
        """Check that user password is not in forbidden list. Raise a validation error if a forbidden password is encountered."""
        for user in self.users:
            current_pw = user.password
            if current_pw in self.forbidden_passwords:
                raise ValueError(
                    f'Password {current_pw} is forbidden. Please choose another password for user {user.username}.'
                )
        return self


data = {
    'forbidden_passwords': ['123'],
    'users': [
        {'username': 'Spartacat', 'password': '123'},
        {'username': 'Iceburgh', 'password': '87'},
    ],
}
try:
    org = Organization(**data)
except ValidationError as e:
    print(e)
    """
    1 validation error for Organization
      Value error, Password 123 is forbidden. Please choose another password for user Spartacat. [type=value_error, input_value={'forbidden_passwords': [...gh', 'password': '87'}]}, input_type=dict]
    """

あるいは、ネストされたモデル クラス ( User ) でカスタム バリデーターを使用し、親モデルからの禁止されたパスワード データを検証コンテキスト経由で渡すこともできます。

!!!警告 バリデーター内でコンテキストを変更できる機能により、ネストされた検証に多くの機能が追加されますが、コードが混乱したり、デバッグが困難になったりする可能性もあります。このアプローチは自己責任で使用してください。

from typing import List

from pydantic import BaseModel, ValidationError, ValidationInfo, field_validator


class User(BaseModel):
    username: str
    password: str

    @field_validator('password', mode='after')
    @classmethod
    def validate_user_passwords(
        cls, password: str, info: ValidationInfo
    ) -> str:
        """Check that user password is not in forbidden list."""
        forbidden_passwords = (
            info.context.get('forbidden_passwords', []) if info.context else []
        )
        if password in forbidden_passwords:
            raise ValueError(f'Password {password} is forbidden.')
        return password


class Organization(BaseModel):
    forbidden_passwords: List[str]
    users: List[User]

    @field_validator('forbidden_passwords', mode='after')
    @classmethod
    def add_context(cls, v: List[str], info: ValidationInfo) -> List[str]:
        if info.context is not None:
            info.context.update({'forbidden_passwords': v})
        return v


data = {
    'forbidden_passwords': ['123'],
    'users': [
        {'username': 'Spartacat', 'password': '123'},
        {'username': 'Iceburgh', 'password': '87'},
    ],
}

try:
    org = Organization.model_validate(data, context={})
except ValidationError as e:
    print(e)
    """
    1 validation error for Organization
    users.0.password
      Value error, Password 123 is forbidden. [type=value_error, input_value='123', input_type=str]
    """

context プロパティがmodel_validateに含まれていない場合、 info.context Noneになり、上記の実装では禁止されたパスワードのリストがコンテキストに追加されないことに注意してください。そのため、 validate_user_passwords必要なパスワード検証を実行しません。

検証コンテキストの詳細については、ここを参照してください。


本文总阅读量