Validator
!!! peringatan "🚧 Pekerjaan Sedang Berlangsung" Halaman ini sedang dalam proses.
Halaman ini memberikan cuplikan contoh untuk membuat validator khusus yang lebih kompleks di Pydantic.
Menggunakan Validator Khusus dengan Metadata [Annotated
][mengetik. Beranotasi].¶
Dalam contoh ini, kita akan membuat validator khusus, yang dilampirkan ke tipe Annotated
, yang memastikan objek datetime
mematuhi batasan zona waktu tertentu.
Validator khusus mendukung spesifikasi string zona waktu, dan akan memunculkan kesalahan jika objek datetime
tidak memiliki zona waktu yang benar.
Kami menggunakan __get_pydantic_core_schema__
di validator untuk menyesuaikan skema tipe beranotasi (dalam hal ini, datetime
), yang memungkinkan kami menambahkan logika validasi khusus. Khususnya, kami menggunakan fungsi wrap
validator sehingga kami dapat melakukan operasi sebelum dan sesudah validasi pydantic
default dari datetime
.
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable, Optional
import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated
from pydantic import (
GetCoreSchemaHandler,
PydanticUserError,
TypeAdapter,
ValidationError,
)
@dataclass(frozen=True)
class MyDatetimeValidator:
tz_constraint: Optional[str] = None
def tz_constraint_validator(
self,
value: dt.datetime,
handler: Callable, # (1)!
):
"""Validate tz_constraint and tz_info."""
# handle naive datetimes
if self.tz_constraint is None:
assert (
value.tzinfo is None
), 'tz_constraint is None, but provided value is tz-aware.'
return handler(value)
# validate tz_constraint and tz-aware tzinfo
if self.tz_constraint not in pytz.all_timezones:
raise PydanticUserError(
f'Invalid tz_constraint: {self.tz_constraint}',
code='unevaluable-type-annotation',
)
result = handler(value) # (2)!
assert self.tz_constraint == str(
result.tzinfo
), f'Invalid tzinfo: {str(result.tzinfo)}, expected: {self.tz_constraint}'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.tz_constraint_validator,
handler(source_type),
)
LA = 'America/Los_Angeles'
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(LA)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
except ValidationError as ve:
pprint(ve.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Invalid tzinfo: Europe/London, expected: America/Los_Angeles')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Invalid tzinfo: Europe/London, expected: America/Los_Angeles',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
- Fungsi
handler
adalah apa yang kami panggil untuk memvalidasi input dengan validasipydantic
standar - Kami memanggil fungsi
handler
untuk memvalidasi input dengan validasipydantic
standar di validator bungkus ini
Kita juga dapat menerapkan batasan offset UTC dengan cara serupa. Dengan asumsi kita memiliki lower_bound
dan upper_bound
, kita dapat membuat validator khusus untuk memastikan datetime
kita memiliki offset UTC yang inklusif dalam batas yang kita tetapkan:
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable
import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated
from pydantic import GetCoreSchemaHandler, TypeAdapter, ValidationError
@dataclass(frozen=True)
class MyDatetimeValidator:
lower_bound: int
upper_bound: int
def validate_tz_bounds(self, value: dt.datetime, handler: Callable):
"""Validate and test bounds"""
assert value.utcoffset() is not None, 'UTC offset must exist'
assert self.lower_bound <= self.upper_bound, 'Invalid bounds'
result = handler(value)
hours_offset = value.utcoffset().total_seconds() / 3600
assert (
self.lower_bound <= hours_offset <= self.upper_bound
), 'Value out of bounds'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.validate_tz_bounds,
handler(source_type),
)
LA = 'America/Los_Angeles' # UTC-7 or UTC-8
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(-10, -5)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
print(
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
)
except ValidationError as e:
pprint(e.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Value out of bounds')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Value out of bounds',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
Memvalidasi Bidang Model Bersarang¶
Di sini, kami mendemonstrasikan dua cara untuk memvalidasi bidang model bersarang, dengan validator menggunakan data dari model induk.
Dalam contoh ini, kami membuat validator yang memeriksa bahwa setiap kata sandi pengguna tidak ada dalam daftar kata sandi terlarang yang ditentukan oleh model induk.
Salah satu cara untuk melakukannya adalah dengan menempatkan validator khusus pada model luar:
from typing import List
from typing_extensions import Self
from pydantic import BaseModel, ValidationError, model_validator
class User(BaseModel):
username: str
password: str
class Organization(BaseModel):
forbidden_passwords: List[str]
users: List[User]
@model_validator(mode='after')
def validate_user_passwords(self) -> Self:
"""Check that user password is not in forbidden list. Raise a validation error if a forbidden password is encountered."""
for user in self.users:
current_pw = user.password
if current_pw in self.forbidden_passwords:
raise ValueError(
f'Password {current_pw} is forbidden. Please choose another password for user {user.username}.'
)
return self
data = {
'forbidden_passwords': ['123'],
'users': [
{'username': 'Spartacat', 'password': '123'},
{'username': 'Iceburgh', 'password': '87'},
],
}
try:
org = Organization(**data)
except ValidationError as e:
print(e)
"""
1 validation error for Organization
Value error, Password 123 is forbidden. Please choose another password for user Spartacat. [type=value_error, input_value={'forbidden_passwords': [...gh', 'password': '87'}]}, input_type=dict]
"""
Alternatifnya, validator khusus dapat digunakan di kelas model bersarang ( User
), dengan data kata sandi terlarang dari model induk diteruskan melalui konteks validasi.
!!! peringatan Kemampuan untuk mengubah konteks dalam validator menambah banyak kekuatan pada validasi bertingkat, namun juga dapat menyebabkan kode membingungkan atau sulit di-debug. Gunakan pendekatan ini dengan risiko Anda sendiri!
from typing import List
from pydantic import BaseModel, ValidationError, ValidationInfo, field_validator
class User(BaseModel):
username: str
password: str
@field_validator('password', mode='after')
@classmethod
def validate_user_passwords(
cls, password: str, info: ValidationInfo
) -> str:
"""Check that user password is not in forbidden list."""
forbidden_passwords = (
info.context.get('forbidden_passwords', []) if info.context else []
)
if password in forbidden_passwords:
raise ValueError(f'Password {password} is forbidden.')
return password
class Organization(BaseModel):
forbidden_passwords: List[str]
users: List[User]
@field_validator('forbidden_passwords', mode='after')
@classmethod
def add_context(cls, v: List[str], info: ValidationInfo) -> List[str]:
if info.context is not None:
info.context.update({'forbidden_passwords': v})
return v
data = {
'forbidden_passwords': ['123'],
'users': [
{'username': 'Spartacat', 'password': '123'},
{'username': 'Iceburgh', 'password': '87'},
],
}
try:
org = Organization.model_validate(data, context={})
except ValidationError as e:
print(e)
"""
1 validation error for Organization
users.0.password
Value error, Password 123 is forbidden. [type=value_error, input_value='123', input_type=str]
"""
Perhatikan bahwa jika properti konteks tidak disertakan dalam model_validate
, maka info.context
akan menjadi None
dan daftar kata sandi terlarang tidak akan ditambahkan ke konteks dalam implementasi di atas. Dengan demikian, validate_user_passwords
tidak akan melakukan validasi kata sandi yang diinginkan.
Detail lebih lanjut tentang konteks validasi dapat ditemukan di sini .
本文总阅读量次