Errores de validación
Pydantic 试图提供有用的验证错误。下面是用户在使用 Pydantic 时可能遇到的常见验证错误的详细信息,以及一些解决这些错误的建议。
arguments_type
¶
当在验证期间将作为参数传递给函数的对象不是 tuple
、 list
或 dict
时,会引发此错误。因为 NamedTuple
在其实现中使用函数调用,所以这是产生此错误的一种方式:
from typing import NamedTuple
from pydantic import BaseModel, ValidationError
class MyNamedTuple(NamedTuple):
x: int
class MyModel(BaseModel):
field: MyNamedTuple
try:
MyModel.model_validate({'field': 'invalid'})
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'arguments_type'
assertion_error
¶
当验证过程中遇到失败的 assert
语句时会引发此错误:
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
x: int
@field_validator('x')
@classmethod
def force_x_positive(cls, v):
assert v > 0
return v
try:
Model(x=-1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'assertion_error'
bool_parsing
¶
当输入值是一个无效的布尔值转换字符串时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: bool
Model(x='true') # OK
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'bool_parsing'
bool_type
¶
当输入值的类型对于 bool
字段无效时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: bool
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'bool_type'
当输入值不是 bool
的实例时,也会引发此错误。
bytes_too_long
¶
当 bytes
值的长度大于字段的 max_length
约束时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: bytes = Field(max_length=3)
try:
Model(x=b'test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'bytes_too_long'
bytes_too_short
¶
当 bytes
值的长度小于字段的 min_length
约束时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: bytes = Field(min_length=3)
try:
Model(x=b't')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'bytes_too_short'
bytes_type
¶
当输入值的类型对于 bytes
字段无效时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: bytes
try:
Model(x=123)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'bytes_type'
当输入值不是 bytes
的实例时,也会引发此错误,对于严格字段也是如此。
callable_type
¶
当输入值作为 Callable
无效时会引发此错误:
from typing import Any, Callable
from pydantic import BaseModel, ImportString, ValidationError
class Model(BaseModel):
x: ImportString[Callable[[Any], Any]]
Model(x='math:cos') # OK
try:
Model(x='os.path')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'callable_type'
dataclass_exact_type
¶
当使用 strict=True
验证数据类时,如果输入不是该数据类的实例,会引发此错误:
import pydantic.dataclasses
from pydantic import TypeAdapter, ValidationError
@pydantic.dataclasses.dataclass
class MyDataclass:
x: str
adapter = TypeAdapter(MyDataclass)
print(adapter.validate_python(MyDataclass(x='test'), strict=True))
#> MyDataclass(x='test')
print(adapter.validate_python({'x': 'test'}))
#> MyDataclass(x='test')
try:
adapter.validate_python({'x': 'test'}, strict=True)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'dataclass_exact_type'
dataclass_type
¶
当输入值对于 dataclass
字段无效时会引发此错误:
from pydantic import ValidationError, dataclasses
@dataclasses.dataclass
class Inner:
x: int
@dataclasses.dataclass
class Outer:
y: Inner
Outer(y=Inner(x=1)) # OK
try:
Outer(y=1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'dataclass_type'
date_from_datetime_inexact
¶
当为 date
字段提供的输入 datetime
值具有非零时间部分时,会引发此错误。要将时间戳解析为 date
类型的字段,时间部分必须全部为零:
from datetime import date, datetime
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: date
Model(x='2023-01-01') # OK
Model(x=datetime(2023, 1, 1)) # OK
try:
Model(x=datetime(2023, 1, 1, 12))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_from_datetime_inexact'
date_from_datetime_parsing
¶
当输入值是无法解析为 date
字段的字符串时会引发此错误:
from datetime import date
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: date
try:
Model(x='XX1494012000')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_from_datetime_parsing'
date_future
¶
当为 FutureDate
字段提供的输入值不在未来时会引发此错误:
from datetime import date
from pydantic import BaseModel, FutureDate, ValidationError
class Model(BaseModel):
x: FutureDate
try:
Model(x=date(2000, 1, 1))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_future'
date_parsing
¶
当验证 JSON 时,如果输入值是无法解析为 date
字段的字符串,则会引发此错误:
import json
from datetime import date
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: date = Field(strict=True)
try:
Model.model_validate_json(json.dumps({'x': '1'}))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_parsing'
date_past
¶
当为 PastDate
字段提供的值不在过去时,会引发此错误:
from datetime import date, timedelta
from pydantic import BaseModel, PastDate, ValidationError
class Model(BaseModel):
x: PastDate
try:
Model(x=date.today() + timedelta(1))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_past'
date_type
¶
当输入值的类型对于 date
字段无效时会引发此错误:
from datetime import date
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: date
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'date_type'
当输入值不是 date
的实例时,也会引发此错误。
datetime_from_date_parsing
¶
注意
将在 v2.6.0
中添加对此错误的支持,以及对来自 yyyy-MM-DD
日期的日期时间进行解析的支持
当输入值是无法解析为 datetime
字段的字符串时会引发此错误:
from datetime import datetime
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: datetime
try:
# there is no 13th month
Model(x='2023-13-01')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_from_date_parsing'
datetime_future
¶
当为 FutureDatetime
字段提供的数值不在未来时会引发此错误:
from datetime import datetime
from pydantic import BaseModel, FutureDatetime, ValidationError
class Model(BaseModel):
x: FutureDatetime
try:
Model(x=datetime(2000, 1, 1))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_future'
datetime_object_invalid
¶
当 datetime
对象的某些内容无效时会引发此错误:
from datetime import datetime, tzinfo
from pydantic import AwareDatetime, BaseModel, ValidationError
class CustomTz(tzinfo):
# utcoffset is not implemented!
def tzname(self, _dt):
return 'CustomTZ'
class Model(BaseModel):
x: AwareDatetime
try:
Model(x=datetime(2023, 1, 1, tzinfo=CustomTz()))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_object_invalid'
datetime_parsing
¶
当值为无法解析为 datetime
字段的字符串时会引发此错误:
import json
from datetime import datetime
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: datetime = Field(strict=True)
try:
Model.model_validate_json(json.dumps({'x': 'not a datetime'}))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_parsing'
datetime_past
¶
当为 PastDatetime
字段提供的值不在过去时,会引发此错误:
from datetime import datetime, timedelta
from pydantic import BaseModel, PastDatetime, ValidationError
class Model(BaseModel):
x: PastDatetime
try:
Model(x=datetime.now() + timedelta(100))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_past'
datetime_type
¶
当输入值的类型对于 datetime
字段无效时,会引发此错误:
from datetime import datetime
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: datetime
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'datetime_type'
当输入值不是 datetime
的实例时,也会引发此错误,对于严格字段也是如此。
decimal_max_digits
¶
当为 Decimal
提供的值有太多数字时会引发此错误:
from decimal import Decimal
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: Decimal = Field(max_digits=3)
try:
Model(x='42.1234')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'decimal_max_digits'
decimal_max_places
¶
当为 Decimal
提供的值小数点后有太多位数字时会引发此错误:
from decimal import Decimal
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: Decimal = Field(decimal_places=3)
try:
Model(x='42.1234')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'decimal_max_places'
decimal_parsing
¶
当为 Decimal
提供的值无法解析为十进制数字时会引发此错误:
from decimal import Decimal
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: Decimal = Field(decimal_places=3)
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'decimal_parsing'
decimal_type
¶
当为 Decimal
提供的值的类型错误时会引发此错误:
from decimal import Decimal
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: Decimal = Field(decimal_places=3)
try:
Model(x=[1, 2, 3])
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'decimal_type'
当输入值不是 Decimal
的实例时,也会引发此错误,对于严格字段也是如此。
decimal_whole_digits
¶
当为 Decimal
提供的值在小数点前的数字比 max_digits
- decimal_places
(只要两者都指定)多的情况下会引发此错误:
from decimal import Decimal
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: Decimal = Field(max_digits=6, decimal_places=3)
try:
Model(x='12345.6')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'decimal_whole_digits'
当输入值不是 Decimal
的实例时,也会引发此错误,对于严格字段也是如此。
dict_type
¶
当输入值的类型不是 dict
时,会引发此错误:对于 dict
字段:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: dict
try:
Model(x=['1', '2'])
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'dict_type'
enum
¶
当输入值在 enum
字段成员中不存在时会引发此错误:
from enum import Enum
from pydantic import BaseModel, ValidationError
class MyEnum(str, Enum):
option = 'option'
class Model(BaseModel):
x: MyEnum
try:
Model(x='other_option')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'enum'
extra_forbidden
¶
当输入值包含额外字段时会引发此错误,但 model_config['extra'] == 'forbid'
:
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
x: str
model_config = ConfigDict(extra='forbid')
try:
Model(x='test', y='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'extra_forbidden'
你可以在 [pydantic.config.ConfigDict.extra] 部分了解更多关于 extra
配置的信息。
finite_number
¶
当值为无穷大或太大而无法表示为 64 位浮点数时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: int
try:
Model(x=2.2250738585072011e308)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'finite_number'
float_parsing
¶
当值为无法解析为 float
的字符串时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: float
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'float_parsing'
float_type
¶
当输入值的类型对于 float
字段无效时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: float
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'float_type'
frozen_field
¶
当您尝试向带有 frozen=True
的字段赋值或删除此类字段时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: str = Field('test', frozen=True)
model = Model()
try:
model.x = 'test1'
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'frozen_field'
try:
del model.x
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'frozen_field'
frozen_instance
¶
当你尝试删除或为任何字段分配新值时,会引发此错误:
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
x: int
model_config = ConfigDict(frozen=True)
m = Model(x=1)
try:
m.x = 2
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'frozen_instance'
try:
del m.x
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'frozen_instance'
frozen_set_type
¶
当输入值的类型对于 frozenset
字段无效时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: frozenset
try:
model = Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'frozen_set_type'
get_attribute_error
¶
当 model_config['from_attributes'] == True
时会引发此错误,同时在读取属性时会引发错误:
from pydantic import BaseModel, ConfigDict, ValidationError
class Foobar:
def __init__(self):
self.x = 1
@property
def y(self):
raise RuntimeError('intentional error')
class Model(BaseModel):
x: int
y: str
model_config = ConfigDict(from_attributes=True)
try:
Model.model_validate(Foobar())
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'get_attribute_error'
greater_than
¶
当值不大于字段的 gt
约束时会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: int = Field(gt=10)
try:
Model(x=10)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'greater_than'
greater_than_equal
¶
当值小于或等于字段的 ge
约束时会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: int = Field(ge=10)
try:
Model(x=9)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'greater_than_equal'
int_from_float
¶
当你为 int
字段提供 float
值时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: int
try:
Model(x=0.5)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'int_from_float'
int_parsing
¶
当值无法解析为 int
时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: int
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'int_parsing'
int_parsing_size
¶
当尝试从字符串中解析 Python 或 JSON 值时,如果该字符串超出了 Python str
到 int
解析允许的最大范围,则会引发此错误:
import json
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: int
# from Python
assert Model(x='1' * 4_300).x == int('1' * 4_300) # OK
too_long = '1' * 4_301
try:
Model(x=too_long)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'int_parsing_size'
# from JSON
try:
Model.model_validate_json(json.dumps({'x': too_long}))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'int_parsing_size'
int_type
¶
当输入值的类型对于 int
字段无效时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: int
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'int_type'
invalid_key
¶
当尝试验证具有不是 str
实例的键的 dict
时会引发此错误:
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
x: int
model_config = ConfigDict(extra='allow')
try:
Model.model_validate({'x': 1, b'y': 2})
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'invalid_key'
is_instance_of
¶
当输入值不是预期类型的实例时会引发此错误:
from pydantic import BaseModel, ConfigDict, ValidationError
class Nested:
x: str
class Model(BaseModel):
y: Nested
model_config = ConfigDict(arbitrary_types_allowed=True)
try:
Model(y='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'is_instance_of'
is_subclass_of
¶
当输入值不是预期类型的子类时,会引发此错误:
from typing import Type
from pydantic import BaseModel, ValidationError
class Nested:
x: str
class Model(BaseModel):
y: Type[Nested]
try:
Model(y='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'is_subclass_of'
iterable_type
¶
当输入值作为 Iterable
无效时会引发此错误:
from typing import Iterable
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
y: Iterable
try:
Model(y=123)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'iterable_type'
iteration_error
¶
当迭代过程中发生错误时会引发此错误:
from typing import List
from pydantic import BaseModel, ValidationError
def gen():
yield 1
raise RuntimeError('error')
class Model(BaseModel):
x: List[int]
try:
Model(x=gen())
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'iteration_error'
json_invalid
¶
当输入值不是有效的 JSON 字符串时会引发此错误:
from pydantic import BaseModel, Json, ValidationError
class Model(BaseModel):
x: Json
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'json_invalid'
json_type
¶
当输入值的类型无法解析为 JSON 时,会引发此错误:
from pydantic import BaseModel, Json, ValidationError
class Model(BaseModel):
x: Json
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'json_type'
less_than
¶
当输入值不少于字段的 lt
约束时会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: int = Field(lt=10)
try:
Model(x=10)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'less_than'
less_than_equal
¶
当输入值小于或等于字段的 le
约束时会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: int = Field(le=10)
try:
Model(x=11)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'less_than_equal'
list_type
¶
当输入值的类型对于 list
字段无效时会引发此错误:
from typing import List
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: List[int]
try:
Model(x=1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'list_type'
literal_error
¶
当输入值不是预期的文字值之一时会引发此错误:
from typing_extensions import Literal
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: Literal['a', 'b']
Model(x='a') # OK
try:
Model(x='c')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'literal_error'
mapping_type
¶
当由于调用 Mapping
协议中的方法失败(例如 .items()
)而导致验证过程中出现问题时,会引发此错误
from collections.abc import Mapping
from typing import Dict
from pydantic import BaseModel, ValidationError
class BadMapping(Mapping):
def items(self):
raise ValueError()
def __iter__(self):
raise ValueError()
def __getitem__(self, key):
raise ValueError()
def __len__(self):
return 1
class Model(BaseModel):
x: Dict[str, str]
try:
Model(x=BadMapping())
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'mapping_type'
missing
¶
当输入值缺少必填字段时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: str
try:
Model()
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'missing'
missing_argument
¶
当向使用 validate_call
修饰的函数传递必需的位置或关键字参数时,会引发此错误
from pydantic import ValidationError, validate_call
@validate_call
def foo(a: int):
return a
try:
foo()
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'missing_argument'
missing_keyword_only_argument
¶
当向使用 validate_call
修饰的函数传递必需的仅限关键字的参数时,会引发此错误
from pydantic import ValidationError, validate_call
@validate_call
def foo(*, a: int):
return a
try:
foo()
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'missing_keyword_only_argument'
missing_positional_only_argument
¶
当向使用 validate_call
修饰的函数传递必需的仅限位置参数时,会引发此错误:
from pydantic import ValidationError, validate_call
@validate_call
def foo(a: int, /):
return a
try:
foo()
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'missing_positional_only_argument'
model_attributes_type
¶
当输入值不是有效的字典、模型实例或可以从中提取字段的实例时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
a: int
b: int
# simply validating a dict
print(Model.model_validate({'a': 1, 'b': 2}))
#> a=1 b=2
class CustomObj:
def __init__(self, a, b):
self.a = a
self.b = b
# using from attributes to extract fields from an objects
print(Model.model_validate(CustomObj(3, 4), from_attributes=True))
#> a=3 b=4
try:
Model.model_validate('not an object', from_attributes=True)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'model_attributes_type'
model_type
¶
当模型的输入不是模型或字典的实例时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
a: int
b: int
# simply validating a dict
m = Model.model_validate({'a': 1, 'b': 2})
print(m)
#> a=1 b=2
# validating an existing model instance
print(Model.model_validate(m))
#> a=1 b=2
try:
Model.model_validate('not an object')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'model_type'
multiple_argument_values
¶
当你在调用使用 validate_call
修饰的函数时,为单个参数提供多个值时会引发此错误:
from pydantic import ValidationError, validate_call
@validate_call
def foo(a: int):
return a
try:
foo(1, a=2)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'multiple_argument_values'
multiple_of
¶
当输入不是字段的 multiple_of
约束的倍数时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: int = Field(multiple_of=5)
try:
Model(x=1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'multiple_of'
no_such_attribute
¶
当在配置中遇到 validate_assignment=True
并且尝试为不存在的字段分配值时,会引发此错误:
from pydantic import ConfigDict, ValidationError, dataclasses
@dataclasses.dataclass(config=ConfigDict(validate_assignment=True))
class MyDataclass:
x: int
m = MyDataclass(x=1)
try:
m.y = 10
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'no_such_attribute'
none_required
¶
当输入值不为 None
时,会引发此错误,该字段需要 None
:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: None
try:
Model(x=1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'none_required'
注意
当你的模型中字段名与其类型之间存在命名冲突时,你可能会遇到此错误。更具体地说,当该字段的默认值为 None
时,很可能会抛出此错误。
For example, the following would yield the none_required
validation error since the field int
is set to a default value of None
and has the exact same name as its type, which causes problems with validation.
from typing import Optional
from pydantic import BaseModel
class M1(BaseModel):
int: Optional[int] = None
m = M1(int=123) # errors
recursion_loop
¶
当检测到循环引用时会引发此错误:
from typing import List
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: List['Model']
d = {'x': []}
d['x'].append(d)
try:
Model(**d)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'recursion_loop'
set_type
¶
当值类型对于 set
字段无效时会引发此错误:
from typing import Set
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: Set[int]
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'set_type'
string_pattern_mismatch
¶
当输入值与字段的 pattern
约束不匹配时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: str = Field(pattern='test')
try:
Model(x='1')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_pattern_mismatch'
string_sub_type
¶
当字段为严格类型时,该值是 str
的严格子类型的实例时会引发此错误:
from enum import Enum
from pydantic import BaseModel, Field, ValidationError
class MyEnum(str, Enum):
foo = 'foo'
class Model(BaseModel):
x: str = Field(strict=True)
try:
Model(x=MyEnum.foo)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_sub_type'
string_too_long
¶
当输入值是长度大于字段的 max_length
约束的字符串时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: str = Field(max_length=3)
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_too_long'
string_too_short
¶
当输入值是长度小于字段的 min_length
约束的字符串时,会引发此错误:
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: str = Field(min_length=3)
try:
Model(x='t')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_too_short'
string_type
¶
当输入值的类型对于 str
字段无效时,会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: str
try:
Model(x=1)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_type'
当输入值不是 str
的实例时,也会引发此错误,对于严格字段也是如此。
string_unicode
¶
当该值无法解析为 Unicode 字符串时会引发此错误:
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: str
try:
Model(x=b'\x81')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'string_unicode'
time_delta_parsing
¶
当输入值是无法解析为 timedelta
字段的字符串时,会引发此错误:
from datetime import timedelta
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: timedelta
try:
Model(x='t')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'time_delta_parsing'
time_delta_type
¶
当输入值的类型对于 timedelta
字段无效时会引发此错误:
from datetime import timedelta
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: timedelta
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'time_delta_type'
当输入值不是 timedelta
的实例时,也会引发此错误,对于严格字段也是如此。
time_parsing
¶
当输入值是无法解析为 time
字段的字符串时,会引发此错误:
from datetime import time
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: time
try:
Model(x='25:20:30.400')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'time_parsing'
time_type
¶
当值类型对于 time
字段无效时会引发此错误:
from datetime import time
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: time
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'time_type'
当输入值不是 time
的实例时,也会引发此错误,对于严格字段也是如此。
timezone_aware
¶
当为一个带有时区感知的 datetime
字段提供的 datetime
值没有时区信息时,会引发此错误:
from datetime import datetime
from pydantic import AwareDatetime, BaseModel, ValidationError
class Model(BaseModel):
x: AwareDatetime
try:
Model(x=datetime.now())
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'timezone_aware'
timezone_naive
¶
当为一个没有时区信息的 datetime
字段提供了带有时区信息的 datetime
值时,会引发此错误:
from datetime import datetime, timezone
from pydantic import BaseModel, NaiveDatetime, ValidationError
class Model(BaseModel):
x: NaiveDatetime
try:
Model(x=datetime.now(tz=timezone.utc))
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'timezone_naive'
too_long
¶
当输入值的长度大于字段的 max_length
约束时,会引发此错误:
from typing import List
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: List[int] = Field(max_length=3)
try:
Model(x=[1, 2, 3, 4])
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'too_long'
too_short
¶
当值的长度小于字段的 min_length
约束时会引发此错误:
from typing import List
from pydantic import BaseModel, Field, ValidationError
class Model(BaseModel):
x: List[int] = Field(min_length=3)
try:
Model(x=[1, 2])
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'too_short'
tuple_type
¶
当输入值的类型对于 tuple
字段无效时,会引发此错误:
from typing import Tuple
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
x: Tuple[int]
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'tuple_type'
当输入值不是 tuple
的实例时,也会引发此错误。
unexpected_keyword_argument
¶
当你在调用一个用 validate_call
修饰的函数时,通过关键字为仅限位置的参数提供值时会引发此错误:
from pydantic import ValidationError, validate_call
@validate_call
def foo(a: int, /):
return a
try:
foo(a=2)
except ValidationError as exc:
print(repr(exc.errors()[1]['type']))
#> 'unexpected_keyword_argument'
当使用 pydantic.dataclasses 和 extra=forbid
时也会引发该错误:
from pydantic import TypeAdapter, ValidationError
from pydantic.dataclasses import dataclass
@dataclass(config={'extra': 'forbid'})
class Foo:
bar: int
try:
TypeAdapter(Foo).validate_python({'bar': 1, 'foobar': 2})
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'unexpected_keyword_argument'
unexpected_positional_argument
¶
当你在调用使用 validate_call
修饰的函数时,为关键字参数提供位置值时会引发此错误:
from pydantic import ValidationError, validate_call
@validate_call
def foo(*, a: int):
return a
try:
foo(2)
except ValidationError as exc:
print(repr(exc.errors()[1]['type']))
#> 'unexpected_positional_argument'
union_tag_invalid
¶
当输入的鉴别器不是预期值之一时会引发此错误:
from typing import Union
from typing_extensions import Literal
from pydantic import BaseModel, Field, ValidationError
class BlackCat(BaseModel):
pet_type: Literal['blackcat']
class WhiteCat(BaseModel):
pet_type: Literal['whitecat']
class Model(BaseModel):
cat: Union[BlackCat, WhiteCat] = Field(..., discriminator='pet_type')
try:
Model(cat={'pet_type': 'dog'})
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'union_tag_invalid'
union_tag_not_found
¶
当无法从输入中提取鉴别器值时会引发此错误:
from typing import Union
from typing_extensions import Literal
from pydantic import BaseModel, Field, ValidationError
class BlackCat(BaseModel):
pet_type: Literal['blackcat']
class WhiteCat(BaseModel):
pet_type: Literal['whitecat']
class Model(BaseModel):
cat: Union[BlackCat, WhiteCat] = Field(..., discriminator='pet_type')
try:
Model(cat={'name': 'blackcat'})
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'union_tag_not_found'
url_parsing
¶
当输入值无法解析为 URL 时会引发此错误:
from pydantic import AnyUrl, BaseModel, ValidationError
class Model(BaseModel):
x: AnyUrl
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'url_parsing'
url_scheme
¶
当 URL 方案对于字段的 URL 类型无效时,会引发此错误:
from pydantic import BaseModel, HttpUrl, ValidationError
class Model(BaseModel):
x: HttpUrl
try:
Model(x='ftp://example.com')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'url_scheme'
url_syntax_violation
¶
当 URL 语法无效时会引发此错误:
from pydantic import BaseModel, Field, HttpUrl, ValidationError
class Model(BaseModel):
x: HttpUrl = Field(strict=True)
try:
Model(x='http:////example.com')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'url_syntax_violation'
url_too_long
¶
当 URL 长度大于 2083 时会引发此错误:
from pydantic import BaseModel, HttpUrl, ValidationError
class Model(BaseModel):
x: HttpUrl
try:
Model(x='x' * 2084)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'url_too_long'
url_type
¶
当输入值的类型对于 URL 字段无效时会引发此错误:
from pydantic import BaseModel, HttpUrl, ValidationError
class Model(BaseModel):
x: HttpUrl
try:
Model(x=None)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'url_type'
uuid_parsing
¶
当输入值的类型对于 UUID 字段无效时会引发此错误:
from uuid import UUID
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
u: UUID
try:
Model(u='12345678-124-1234-1234-567812345678')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'uuid_parsing'
uuid_type
¶
当输入值的类型不是 UUID 字段的有效实例(str、bytes 或 UUID)时,会引发此错误:
from uuid import UUID
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
u: UUID
try:
Model(u=1234567812412341234567812345678)
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'uuid_type'
uuid_version
¶
当输入值的类型与 UUID 版本不匹配时,会引发此错误:
from pydantic import UUID5, BaseModel, ValidationError
class Model(BaseModel):
u: UUID5
try:
Model(u='a6cc5730-2261-11ee-9c43-2eb5a363657c')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'uuid_version'
value_error
¶
当验证过程中引发 ValueError
时会引发此错误:
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
x: str
@field_validator('x')
@classmethod
def repeat_b(cls, v):
raise ValueError()
try:
Model(x='test')
except ValidationError as exc:
print(repr(exc.errors()[0]['type']))
#> 'value_error'
本文总阅读量次