Secrets
🚧 Work in Progress
This page is a work in progress.
Serialize SecretStr
and SecretBytes
as plain-text¶
By default, SecretStr
and SecretBytes
will be serialized as **********
when serializing to json.
You can use the field_serializer
to dump the
secret as plain-text when serializing to json.
from pydantic import BaseModel, SecretBytes, SecretStr, field_serializer
class Model(BaseModel):
password: SecretStr
password_bytes: SecretBytes
@field_serializer('password', 'password_bytes', when_used='json')
def dump_secret(self, v):
return v.get_secret_value()
model = Model(password='IAmSensitive', password_bytes=b'IAmSensitiveBytes')
print(model)
#> password=SecretStr('**********') password_bytes=SecretBytes(b'**********')
print(model.password)
#> **********
print(model.model_dump())
"""
{
'password': SecretStr('**********'),
'password_bytes': SecretBytes(b'**********'),
}
"""
print(model.model_dump_json())
#> {"password":"IAmSensitive","password_bytes":"IAmSensitiveBytes"}
Create your own Secret field¶
Pydantic provides the generic Secret
class as a mechanism for creating custom secret types.
API Documentation
Pydantic provides the generic Secret
class as a mechanism for creating custom secret types.
You can either directly parametrize Secret
, or subclass from a parametrized Secret
to customize the str()
and repr()
of a secret type.
from datetime import date
from pydantic import BaseModel, Secret
# Using the default representation
SecretDate = Secret[date]
# Overwriting the representation
class SecretSalary(Secret[float]):
def _display(self) -> str:
return '$****.**'
class Employee(BaseModel):
date_of_birth: SecretDate
salary: SecretSalary
employee = Employee(date_of_birth='1990-01-01', salary=42)
print(employee)
#> date_of_birth=Secret('**********') salary=SecretSalary('$****.**')
print(employee.salary)
#> $****.**
print(employee.salary.get_secret_value())
#> 42.0
print(employee.date_of_birth)
#> **********
print(employee.date_of_birth.get_secret_value())
#> 1990-01-01
You can enforce constraints on the underlying type through annotations: For example:
from typing_extensions import Annotated
from pydantic import BaseModel, Field, Secret, ValidationError
SecretPosInt = Secret[Annotated[int, Field(gt=0, strict=True)]]
class Model(BaseModel):
sensitive_int: SecretPosInt
m = Model(sensitive_int=42)
print(m.model_dump())
#> {'sensitive_int': Secret('**********')}
try:
m = Model(sensitive_int=-42) # (1)!
except ValidationError as exc_info:
print(exc_info.errors(include_url=False, include_input=False))
"""
[
{
'type': 'greater_than',
'loc': ('sensitive_int',),
'msg': 'Input should be greater than 0',
'ctx': {'gt': 0},
}
]
"""
try:
m = Model(sensitive_int='42') # (2)!
except ValidationError as exc_info:
print(exc_info.errors(include_url=False, include_input=False))
"""
[
{
'type': 'int_type',
'loc': ('sensitive_int',),
'msg': 'Input should be a valid integer',
}
]
"""
- The input value is not greater than 0, so it raises a validation error.
- The input value is not an integer, so it raises a validation error because the
SecretPosInt
type has strict mode enabled.
本文总阅读量次