Skip to content

Standard Library Types

Pydantic supports many common types from the Python standard library. If you need stricter processing see Strict Types, including if you need to constrain the values allowed (e.g. to require a positive int).

Booleans

A standard bool field will raise a ValidationError if the value is not one of the following:

  • A valid boolean (i.e. True or False),
  • The integers 0 or 1,
  • a str which when converted to lower case is one of '0', 'off', 'f', 'false', 'n', 'no', '1', 'on', 't', 'true', 'y', 'yes'
  • a bytes which is valid per the previous rule when decoded to str

Note

If you want stricter boolean logic (e.g. a field which only permits True and False) you can use StrictBool.

Here is a script demonstrating some of these behaviors:

from pydantic import BaseModel, ValidationError


class BooleanModel(BaseModel):
    bool_value: bool


print(BooleanModel(bool_value=False))
#> bool_value=False
print(BooleanModel(bool_value='False'))
#> bool_value=False
print(BooleanModel(bool_value=1))
#> bool_value=True
try:
    BooleanModel(bool_value=[])
except ValidationError as e:
    print(str(e))
    """
    1 validation error for BooleanModel
    bool_value
      Input should be a valid boolean [type=bool_type, input_value=[], input_type=list]
    """

Datetime Types

Pydantic supports the following datetime types:

datetime.datetime

  • datetime fields will accept values of type:

    • datetime; an existing datetime object
    • int or float; assumed as Unix time, i.e. seconds (if >= -2e10 and <= 2e10) or milliseconds (if < -2e10or > 2e10) since 1 January 1970
    • str; the following formats are accepted:
      • YYYY-MM-DD[T]HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]
      • YYYY-MM-DD is accepted in lax mode, but not in strict mode
      • int or float as a string (assumed as Unix time)
    • datetime.date instances are accepted in lax mode, but not in strict mode
from datetime import datetime

from pydantic import BaseModel


class Event(BaseModel):
    dt: datetime = None


event = Event(dt='2032-04-23T10:20:30.400+02:30')

print(event.model_dump())
"""
{'dt': datetime.datetime(2032, 4, 23, 10, 20, 30, 400000, tzinfo=TzInfo(+02:30))}
"""

datetime.date

  • date fields will accept values of type:

    • date; an existing date object
    • int or float; handled the same as described for datetime above
    • str; the following formats are accepted:
      • YYYY-MM-DD
      • int or float as a string (assumed as Unix time)
from datetime import date

from pydantic import BaseModel


class Birthday(BaseModel):
    d: date = None


my_birthday = Birthday(d=1679616000.0)

print(my_birthday.model_dump())
#> {'d': datetime.date(2023, 3, 24)}

datetime.time

  • time fields will accept values of type:

    • time; an existing time object
    • str; the following formats are accepted:
      • HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]
from datetime import time

from pydantic import BaseModel


class Meeting(BaseModel):
    t: time = None


m = Meeting(t=time(4, 8, 16))

print(m.model_dump())
#> {'t': datetime.time(4, 8, 16)}

datetime.timedelta

  • timedelta fields will accept values of type:

    • timedelta; an existing timedelta object
    • int or float; assumed to be seconds
    • str; the following formats are accepted:
      • [-][DD]D[,][HH:MM:]SS[.ffffff]
        • Ex: '1d,01:02:03.000004' or '1D01:02:03.000004' or '01:02:03'
      • [±]P[DD]DT[HH]H[MM]M[SS]S (ISO 8601 format for timedelta)
from datetime import timedelta

from pydantic import BaseModel


class Model(BaseModel):
    td: timedelta = None


m = Model(td='P3DT12H30M5S')

print(m.model_dump())
#> {'td': datetime.timedelta(days=3, seconds=45005)}

Number Types

Pydantic supports the following numeric types from the Python standard library:

int

  • Pydantic uses int(v) to coerce types to an int; see Data conversion for details on loss of information during data conversion.

float

  • Pydantic uses float(v) to coerce values to floats.

enum.IntEnum

  • Validation: Pydantic checks that the value is a valid IntEnum instance.
  • Validation for subclass of enum.IntEnum: checks that the value is a valid member of the integer enum; see Enums and Choices for more details.

decimal.Decimal

  • Validation: Pydantic attempts to convert the value to a string, then passes the string to Decimal(v).
  • Serialization: Pydantic serializes Decimal types as strings. You can use a custom serializer to override this behavior if desired. For example:
from decimal import Decimal

from typing_extensions import Annotated

from pydantic import BaseModel, PlainSerializer


class Model(BaseModel):
    x: Decimal
    y: Annotated[
        Decimal,
        PlainSerializer(
            lambda x: float(x), return_type=float, when_used='json'
        ),
    ]


my_model = Model(x=Decimal('1.1'), y=Decimal('2.1'))

print(my_model.model_dump())  # (1)!
#> {'x': Decimal('1.1'), 'y': Decimal('2.1')}
print(my_model.model_dump(mode='json'))  # (2)!
#> {'x': '1.1', 'y': 2.1}
print(my_model.model_dump_json())  # (3)!
#> {"x":"1.1","y":2.1}
  1. Using model_dump, both x and y remain instances of the Decimal type
  2. Using model_dump with mode='json', x is serialized as a string, and y is serialized as a float because of the custom serializer applied.
  3. Using model_dump_json, x is serialized as a string, and y is serialized as a float because of the custom serializer applied.

Enum

Pydantic uses Python's standard enum classes to define choices.

enum.Enum checks that the value is a valid Enum instance. Subclass of enum.Enum checks that the value is a valid member of the enum.

from enum import Enum, IntEnum

from pydantic import BaseModel, ValidationError


class FruitEnum(str, Enum):
    pear = 'pear'
    banana = 'banana'


class ToolEnum(IntEnum):
    spanner = 1
    wrench = 2


class CookingModel(BaseModel):
    fruit: FruitEnum = FruitEnum.pear
    tool: ToolEnum = ToolEnum.spanner


print(CookingModel())
#> fruit=<FruitEnum.pear: 'pear'> tool=<ToolEnum.spanner: 1>
print(CookingModel(tool=2, fruit='banana'))
#> fruit=<FruitEnum.banana: 'banana'> tool=<ToolEnum.wrench: 2>
try:
    CookingModel(fruit='other')
except ValidationError as e:
    print(e)
    """
    1 validation error for CookingModel
    fruit
      Input should be 'pear' or 'banana' [type=enum, input_value='other', input_type=str]
    """

Lists and Tuples

list

Allows list, tuple, set, frozenset, deque, or generators and casts to a list. When a generic parameter is provided, the appropriate validation is applied to all items of the list.

typing.List

Handled the same as list above.

from typing import List, Optional

from pydantic import BaseModel


class Model(BaseModel):
    simple_list: Optional[list] = None
    list_of_ints: Optional[List[int]] = None


print(Model(simple_list=['1', '2', '3']).simple_list)
#> ['1', '2', '3']
print(Model(list_of_ints=['1', '2', '3']).list_of_ints)
#> [1, 2, 3]

tuple

Allows list, tuple, set, frozenset, deque, or generators and casts to a tuple. When generic parameters are provided, the appropriate validation is applied to the respective items of the tuple

typing.Tuple

Handled the same as tuple above.

from typing import Optional, Tuple

from pydantic import BaseModel


class Model(BaseModel):
    simple_tuple: Optional[tuple] = None
    tuple_of_different_types: Optional[Tuple[int, float, bool]] = None


print(Model(simple_tuple=[1, 2, 3, 4]).simple_tuple)
#> (1, 2, 3, 4)
print(Model(tuple_of_different_types=[3, 2, 1]).tuple_of_different_types)
#> (3, 2.0, True)

typing.NamedTuple

Subclasses of typing.NamedTuple are similar to tuple, but create instances of the given namedtuple class.

Subclasses of collections.namedtuple are similar to subclass of typing.NamedTuple, but since field types are not specified, all fields are treated as having type Any.

from typing import NamedTuple

from pydantic import BaseModel, ValidationError


class Point(NamedTuple):
    x: int
    y: int


class Model(BaseModel):
    p: Point


try:
    Model(p=('1.3', '2'))
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    p.0
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='1.3', input_type=str]
    """

Deque

deque

Allows list, tuple, set, frozenset, deque, or generators and casts to a deque. When generic parameters are provided, the appropriate validation is applied to the respective items of the deque.

typing.Deque

Handled the same as deque above.

from typing import Deque, Optional

from pydantic import BaseModel


class Model(BaseModel):
    deque: Optional[Deque[int]] = None


print(Model(deque=[1, 2, 3]).deque)
#> deque([1, 2, 3])

Sets

set

Allows list, tuple, set, frozenset, deque, or generators and casts to a set. When a generic parameter is provided, the appropriate validation is applied to all items of the set.

typing.Set

Handled the same as set above.

from typing import Optional, Set

from pydantic import BaseModel


class Model(BaseModel):
    simple_set: Optional[set] = None
    set_of_ints: Optional[Set[int]] = None


print(Model(simple_set={'1', '2', '3'}).simple_set)
#> {'1', '2', '3'}
print(Model(simple_set=['1', '2', '3']).simple_set)
#> {'1', '2', '3'}
print(Model(set_of_ints=['1', '2', '3']).set_of_ints)
#> {1, 2, 3}

frozenset

Allows list, tuple, set, frozenset, deque, or generators and casts to a frozenset. When a generic parameter is provided, the appropriate validation is applied to all items of the frozen set.

typing.FrozenSet

Handled the same as frozenset above.

from typing import FrozenSet, Optional

from pydantic import BaseModel


class Model(BaseModel):
    simple_frozenset: Optional[frozenset] = None
    frozenset_of_ints: Optional[FrozenSet[int]] = None


m1 = Model(simple_frozenset=['1', '2', '3'])
print(type(m1.simple_frozenset))
#> <class 'frozenset'>
print(sorted(m1.simple_frozenset))
#> ['1', '2', '3']

m2 = Model(frozenset_of_ints=['1', '2', '3'])
print(type(m2.frozenset_of_ints))
#> <class 'frozenset'>
print(sorted(m2.frozenset_of_ints))
#> [1, 2, 3]

Other Iterables

typing.Sequence

This is intended for use when the provided value should meet the requirements of the Sequence ABC, and it is desirable to do eager validation of the values in the container. Note that when validation must be performed on the values of the container, the type of the container may not be preserved since validation may end up replacing values. We guarantee that the validated value will be a valid typing.Sequence, but it may have a different type than was provided (generally, it will become a list).

typing.Iterable

This is intended for use when the provided value may be an iterable that shouldn't be consumed. See Infinite Generators below for more detail on parsing and validation. Similar to typing.Sequence, we guarantee that the validated result will be a valid typing.Iterable, but it may have a different type than was provided. In particular, even if a non-generator type such as a list is provided, the post-validation value of a field of type typing.Iterable will be a generator.

Here is a simple example using typing.Sequence:

from typing import Sequence

from pydantic import BaseModel


class Model(BaseModel):
    sequence_of_ints: Sequence[int] = None


print(Model(sequence_of_ints=[1, 2, 3, 4]).sequence_of_ints)
#> [1, 2, 3, 4]
print(Model(sequence_of_ints=(1, 2, 3, 4)).sequence_of_ints)
#> (1, 2, 3, 4)

Infinite Generators

If you have a generator you want to validate, you can still use Sequence as described above. In that case, the generator will be consumed and stored on the model as a list and its values will be validated against the type parameter of the Sequence (e.g. int in Sequence[int]).

However, if you have a generator that you don't want to be eagerly consumed (e.g. an infinite generator or a remote data loader), you can use a field of type Iterable:

from typing import Iterable

from pydantic import BaseModel


class Model(BaseModel):
    infinite: Iterable[int]


def infinite_ints():
    i = 0
    while True:
        yield i
        i += 1


m = Model(infinite=infinite_ints())
print(m)
"""
infinite=ValidatorIterator(index=0, schema=Some(Int(IntValidator { strict: false })))
"""

for i in m.infinite:
    print(i)
    #> 0
    #> 1
    #> 2
    #> 3
    #> 4
    #> 5
    #> 6
    #> 7
    #> 8
    #> 9
    #> 10
    if i == 10:
        break

Warning

During initial validation, Iterable fields only perform a simple check that the provided argument is iterable. To prevent it from being consumed, no validation of the yielded values is performed eagerly.

Though the yielded values are not validated eagerly, they are still validated when yielded, and will raise a ValidationError at yield time when appropriate:

from typing import Iterable

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    int_iterator: Iterable[int]


def my_iterator():
    yield 13
    yield '27'
    yield 'a'


m = Model(int_iterator=my_iterator())
print(next(m.int_iterator))
#> 13
print(next(m.int_iterator))
#> 27
try:
    next(m.int_iterator)
except ValidationError as e:
    print(e)
    """
    1 validation error for ValidatorIterator
    2
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
    """

Mapping Types

dict

dict(v) is used to attempt to convert a dictionary. see typing.Dict below for sub-type constraints.

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: dict


m = Model(x={'foo': 1})
print(m.model_dump())
#> {'x': {'foo': 1}}

try:
    Model(x='test')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    x
      Input should be a valid dictionary [type=dict_type, input_value='test', input_type=str]
    """

typing.Dict

from typing import Dict

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: Dict[str, int]


m = Model(x={'foo': 1})
print(m.model_dump())
#> {'x': {'foo': 1}}

try:
    Model(x={'foo': '1'})
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    x
      Input should be a valid dictionary [type=dict_type, input_value='test', input_type=str]
    """

TypedDict

Note

This is a new feature of the Python standard library as of Python 3.8. Because of limitations in typing.TypedDict before 3.12, the typing-extensions package is required for Python <3.12. You'll need to import TypedDict from typing_extensions instead of typing and will get a build time error if you don't.

TypedDict declares a dictionary type that expects all of its instances to have a certain set of keys, where each key is associated with a value of a consistent type.

It is same as dict but Pydantic will validate the dictionary since keys are annotated.

from typing_extensions import TypedDict

from pydantic import TypeAdapter, ValidationError


class User(TypedDict):
    name: str
    id: int


ta = TypeAdapter(User)

print(ta.validate_python({'name': 'foo', 'id': 1}))
#> {'name': 'foo', 'id': 1}

try:
    ta.validate_python({'name': 'foo'})
except ValidationError as e:
    print(e)
    """
    1 validation error for typed-dict
    id
      Field required [type=missing, input_value={'name': 'foo'}, input_type=dict]
    """

You can define __pydantic_config__ to change the model inherited from TypedDict. See the ConfigDict API reference for more details.

from typing import Optional

from typing_extensions import TypedDict

from pydantic import ConfigDict, TypeAdapter, ValidationError


# `total=False` means keys are non-required
class UserIdentity(TypedDict, total=False):
    name: Optional[str]
    surname: str


class User(TypedDict):
    __pydantic_config__ = ConfigDict(extra='forbid')

    identity: UserIdentity
    age: int


ta = TypeAdapter(User)

print(
    ta.validate_python(
        {'identity': {'name': 'Smith', 'surname': 'John'}, 'age': 37}
    )
)
#> {'identity': {'name': 'Smith', 'surname': 'John'}, 'age': 37}

print(
    ta.validate_python(
        {'identity': {'name': None, 'surname': 'John'}, 'age': 37}
    )
)
#> {'identity': {'name': None, 'surname': 'John'}, 'age': 37}

print(ta.validate_python({'identity': {}, 'age': 37}))
#> {'identity': {}, 'age': 37}


try:
    ta.validate_python(
        {'identity': {'name': ['Smith'], 'surname': 'John'}, 'age': 24}
    )
except ValidationError as e:
    print(e)
    """
    1 validation error for typed-dict
    identity.name
      Input should be a valid string [type=string_type, input_value=['Smith'], input_type=list]
    """

try:
    ta.validate_python(
        {
            'identity': {'name': 'Smith', 'surname': 'John'},
            'age': '37',
            'email': 'john.smith@me.com',
        }
    )
except ValidationError as e:
    print(e)
    """
    1 validation error for typed-dict
    email
      Extra inputs are not permitted [type=extra_forbidden, input_value='john.smith@me.com', input_type=str]
    """

Callable

See below for more detail on parsing and validation

Fields can also be of type Callable:

from typing import Callable

from pydantic import BaseModel


class Foo(BaseModel):
    callback: Callable[[int], int]


m = Foo(callback=lambda x: x)
print(m)
#> callback=<function <lambda> at 0x0123456789ab>

Warning

Callable fields only perform a simple check that the argument is callable; no validation of arguments, their types, or the return type is performed.

IP Address Types

See Network Types for other custom IP address types.

UUID

For UUID, Pydantic tries to use the type itself for validation by passing the value to UUID(v). There's a fallback to UUID(bytes=v) for bytes and bytearray.

In case you want to constrain the UUID version, you can check the following types:

  • UUID1: requires UUID version 1.
  • UUID3: requires UUID version 3.
  • UUID4: requires UUID version 4.
  • UUID5: requires UUID version 5.

Union

Pydantic has extensive support for union validation, both typing.Union and Python 3.10's pipe syntax (A | B) are supported. Read more in the Unions section of the concepts docs.

Type and TypeVar

type

Pydantic supports the use of type[T] to specify that a field may only accept classes (not instances) that are subclasses of T.

typing.Type

Handled the same as type above.

from typing import Type

from pydantic import BaseModel, ValidationError


class Foo:
    pass


class Bar(Foo):
    pass


class Other:
    pass


class SimpleModel(BaseModel):
    just_subclasses: Type[Foo]


SimpleModel(just_subclasses=Foo)
SimpleModel(just_subclasses=Bar)
try:
    SimpleModel(just_subclasses=Other)
except ValidationError as e:
    print(e)
    """
    1 validation error for SimpleModel
    just_subclasses
      Input should be a subclass of Foo [type=is_subclass_of, input_value=<class '__main__.Other'>, input_type=type]
    """

You may also use Type to specify that any class is allowed.

from typing import Type

from pydantic import BaseModel, ValidationError


class Foo:
    pass


class LenientSimpleModel(BaseModel):
    any_class_goes: Type


LenientSimpleModel(any_class_goes=int)
LenientSimpleModel(any_class_goes=Foo)
try:
    LenientSimpleModel(any_class_goes=Foo())
except ValidationError as e:
    print(e)
    """
    1 validation error for LenientSimpleModel
    any_class_goes
      Input should be a type [type=is_type, input_value=<__main__.Foo object at 0x0123456789ab>, input_type=Foo]
    """

typing.TypeVar

TypeVar is supported either unconstrained, constrained or with a bound.

from typing import TypeVar

from pydantic import BaseModel

Foobar = TypeVar('Foobar')
BoundFloat = TypeVar('BoundFloat', bound=float)
IntStr = TypeVar('IntStr', int, str)


class Model(BaseModel):
    a: Foobar  # equivalent of ": Any"
    b: BoundFloat  # equivalent of ": float"
    c: IntStr  # equivalent of ": Union[int, str]"


print(Model(a=[1], b=4.2, c='x'))
#> a=[1] b=4.2 c='x'

# a may be None
print(Model(a=None, b=1, c=1))
#> a=None b=1.0 c=1

None Types

None, type(None), or Literal[None] are all equivalent according to the typing specification. Allows only None value.

Strings

str: Strings are accepted as-is. bytes and bytearray are converted using v.decode(). Enums inheriting fromstrare converted usingv.value`. All other types cause an error.

Strings aren't Sequences

While instances of str are technically valid instances of the Sequence[str] protocol from a type-checker's point of view, this is frequently not intended as is a common source of bugs.

As a result, Pydantic raises a ValidationError if you attempt to pass a str or bytes instance into a field of type Sequence[str] or Sequence[bytes]:

from typing import Optional, Sequence

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    sequence_of_strs: Optional[Sequence[str]] = None
    sequence_of_bytes: Optional[Sequence[bytes]] = None


print(Model(sequence_of_strs=['a', 'bc']).sequence_of_strs)
#> ['a', 'bc']
print(Model(sequence_of_strs=('a', 'bc')).sequence_of_strs)
#> ('a', 'bc')
print(Model(sequence_of_bytes=[b'a', b'bc']).sequence_of_bytes)
#> [b'a', b'bc']
print(Model(sequence_of_bytes=(b'a', b'bc')).sequence_of_bytes)
#> (b'a', b'bc')


try:
    Model(sequence_of_strs='abc')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    sequence_of_strs
      'str' instances are not allowed as a Sequence value [type=sequence_str, input_value='abc', input_type=str]
    """
try:
    Model(sequence_of_bytes=b'abc')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    sequence_of_bytes
      'bytes' instances are not allowed as a Sequence value [type=sequence_str, input_value=b'abc', input_type=bytes]
    """

Bytes

bytes are accepted as-is. bytearray is converted using bytes(v). str are converted using v.encode(). int, float, and Decimal are coerced using str(v).encode(). See ByteSize for more details.

typing.Literal

Pydantic supports the use of typing.Literal as a lightweight way to specify that a field may accept only specific literal values:

from typing import Literal

from pydantic import BaseModel, ValidationError


class Pie(BaseModel):
    flavor: Literal['apple', 'pumpkin']


Pie(flavor='apple')
Pie(flavor='pumpkin')
try:
    Pie(flavor='cherry')
except ValidationError as e:
    print(str(e))
    """
    1 validation error for Pie
    flavor
      Input should be 'apple' or 'pumpkin' [type=literal_error, input_value='cherry', input_type=str]
    """

One benefit of this field type is that it can be used to check for equality with one or more specific values without needing to declare custom validators:

from typing import ClassVar, List, Literal, Union

from pydantic import BaseModel, ValidationError


class Cake(BaseModel):
    kind: Literal['cake']
    required_utensils: ClassVar[List[str]] = ['fork', 'knife']


class IceCream(BaseModel):
    kind: Literal['icecream']
    required_utensils: ClassVar[List[str]] = ['spoon']


class Meal(BaseModel):
    dessert: Union[Cake, IceCream]


print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Cake
print(type(Meal(dessert={'kind': 'icecream'}).dessert).__name__)
#> IceCream
try:
    Meal(dessert={'kind': 'pie'})
except ValidationError as e:
    print(str(e))
    """
    2 validation errors for Meal
    dessert.Cake.kind
      Input should be 'cake' [type=literal_error, input_value='pie', input_type=str]
    dessert.IceCream.kind
      Input should be 'icecream' [type=literal_error, input_value='pie', input_type=str]
    """

With proper ordering in an annotated Union, you can use this to parse types of decreasing specificity:

from typing import Literal, Optional, Union

from pydantic import BaseModel


class Dessert(BaseModel):
    kind: str


class Pie(Dessert):
    kind: Literal['pie']
    flavor: Optional[str]


class ApplePie(Pie):
    flavor: Literal['apple']


class PumpkinPie(Pie):
    flavor: Literal['pumpkin']


class Meal(BaseModel):
    dessert: Union[ApplePie, PumpkinPie, Pie, Dessert]


print(type(Meal(dessert={'kind': 'pie', 'flavor': 'apple'}).dessert).__name__)
#> ApplePie
print(type(Meal(dessert={'kind': 'pie', 'flavor': 'pumpkin'}).dessert).__name__)
#> PumpkinPie
print(type(Meal(dessert={'kind': 'pie'}).dessert).__name__)
#> Dessert
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Dessert

typing.Any

Allows any value, including None.

typing.Annotated

Allows wrapping another type with arbitrary metadata, as per PEP-593. The Annotated hint may contain a single call to the Field function, but otherwise the additional metadata is ignored and the root type is used.

typing.Pattern

Will cause the input value to be passed to re.compile(v) to create a regular expression pattern.

pathlib.Path

Simply uses the type itself for validation by passing the value to Path(v).


本文总阅读量