Zum Inhalt

Konfiguration

Das Verhalten von Pydantic kann über BaseModel.model_config und als Argument für TypeAdapter gesteuert werden.

!!! Hinweis: Vor v2.0 wurde die Config Klasse verwendet. Dies wird weiterhin unterstützt, ist jedoch veraltet .

from pydantic import BaseModel, ConfigDict, ValidationError


class Model(BaseModel):
    model_config = ConfigDict(str_max_length=10)

    v: str


try:
    m = Model(v='x' * 20)
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    v
      String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
    """

Außerdem können Sie Konfigurationsoptionen als Modellklassen-Kwargs angeben:

from pydantic import BaseModel, ValidationError


class Model(BaseModel, extra='forbid'):  # (1)!
    a: str


try:
    Model(a='spam', b='oh no')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    b
      Extra inputs are not permitted [type=extra_forbidden, input_value='oh no', input_type=str]
    """
  1. Weitere Einzelheiten finden Sie im Abschnitt „Zusätzliche Attribute“ .

Ebenso, wenn Sie den Dekorator @dataclass von Pydantic verwenden:

from datetime import datetime

from pydantic import ConfigDict, ValidationError
from pydantic.dataclasses import dataclass

config = ConfigDict(str_max_length=10, validate_assignment=True)


@dataclass(config=config)
class User:
    id: int
    name: str = 'John Doe'
    signup_ts: datetime = None


user = User(id='42', signup_ts='2032-06-21T12:00')
try:
    user.name = 'x' * 20
except ValidationError as e:
    print(e)
    """
    1 validation error for User
    name
      String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
    """

Konfiguration mit dataclass aus der Standardbibliothek oder TypedDict

Wenn Sie die dataclass aus der Standardbibliothek oder TypedDict verwenden, sollten Sie stattdessen __pydantic_config__ verwenden.

from dataclasses import dataclass
from datetime import datetime

from pydantic import ConfigDict


@dataclass
class User:
    __pydantic_config__ = ConfigDict(strict=True)

    id: int
    name: str = 'John Doe'
    signup_ts: datetime = None

Alternativ kann der Dekorator with_config verwendet werden, um Typprüfern zu entsprechen.

from typing_extensions import TypedDict

from pydantic import ConfigDict, with_config


@with_config(ConfigDict(str_to_lower=True))
class Model(TypedDict):
    x: str

Verhalten global ändern

Wenn Sie das Verhalten von Pydantic global ändern möchten, können Sie Ihr eigenes benutzerdefiniertes BaseModel mit der benutzerdefinierten model_config erstellen, da die Konfiguration geerbt wird:

from pydantic import BaseModel, ConfigDict


class Parent(BaseModel):
    model_config = ConfigDict(extra='allow')


class Model(Parent):
    x: str


m = Model(x='foo', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}

Wenn Sie der Model -Klasse eine model_config hinzufügen, wird diese mit der model_config von Parent zusammengeführt :

from pydantic import BaseModel, ConfigDict


class Parent(BaseModel):
    model_config = ConfigDict(extra='allow')


class Model(Parent):
    model_config = ConfigDict(str_to_lower=True)  # (1)!

    x: str


m = Model(x='FOO', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
print(m.model_config)
#> {'extra': 'allow', 'str_to_lower': True}

本文总阅读量