功能序列化器
This module contains related classes and functions for serialization.
PlainSerializer
dataclass
¶
PlainSerializer(
func: SerializerFunction,
return_type: Any = PydanticUndefined,
when_used: Literal[
"always", "unless-none", "json", "json-unless-none"
] = "always",
)
Plain serializers use a function to modify the output of serialization.
This is particularly helpful when you want to customize the serialization for annotated types.
Consider an input of list
, which will be serialized into a space-delimited string.
from typing import List
from typing_extensions import Annotated
from pydantic import BaseModel, PlainSerializer
CustomStr = Annotated[
List, PlainSerializer(lambda x: ' '.join(x), return_type=str)
]
class StudentModel(BaseModel):
courses: CustomStr
student = StudentModel(courses=['Math', 'Chemistry', 'English'])
print(student.model_dump())
#> {'courses': 'Math Chemistry English'}
Attributes:
Name | Type | Description |
---|---|---|
func |
SerializerFunction
|
The serializer function. |
return_type |
Any
|
The return type for the function. If omitted it will be inferred from the type annotation. |
when_used |
Literal['always', 'unless-none', 'json', 'json-unless-none']
|
Determines when this serializer should be used. Accepts a string with values |
WrapSerializer
dataclass
¶
WrapSerializer(
func: WrapSerializerFunction,
return_type: Any = PydanticUndefined,
when_used: Literal[
"always", "unless-none", "json", "json-unless-none"
] = "always",
)
Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization logic, and can modify the resulting value before returning it as the final output of serialization.
For example, here's a scenario in which a wrap serializer transforms timezones to UTC and utilizes the existing datetime
serialization logic.
from datetime import datetime, timezone
from typing import Any, Dict
from typing_extensions import Annotated
from pydantic import BaseModel, WrapSerializer
class EventDatetime(BaseModel):
start: datetime
end: datetime
def convert_to_utc(value: Any, handler, info) -> Dict[str, datetime]:
# Note that `helper` can actually help serialize the `value` for further custom serialization in case it's a subclass.
partial_result = handler(value, info)
if info.mode == 'json':
return {
k: datetime.fromisoformat(v).astimezone(timezone.utc)
for k, v in partial_result.items()
}
return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()}
UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)]
class EventModel(BaseModel):
event_datetime: UTCEventDatetime
dt = EventDatetime(
start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00'
)
event = EventModel(event_datetime=dt)
print(event.model_dump())
'''
{
'event_datetime': {
'start': datetime.datetime(
2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc
),
'end': datetime.datetime(
2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc
),
}
}
'''
print(event.model_dump_json())
'''
{"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}}
'''
Attributes:
Name | Type | Description |
---|---|---|
func |
WrapSerializerFunction
|
The serializer function to be wrapped. |
return_type |
Any
|
The return type for the function. If omitted it will be inferred from the type annotation. |
when_used |
Literal['always', 'unless-none', 'json', 'json-unless-none']
|
Determines when this serializer should be used. Accepts a string with values |
field_serializer ¶
field_serializer(
*fields: str,
mode: Literal["plain", "wrap"] = "plain",
return_type: Any = PydanticUndefined,
when_used: Literal[
"always", "unless-none", "json", "json-unless-none"
] = "always",
check_fields: bool | None = None
) -> Callable[[Any], Any]
Decorator that enables custom field serialization.
In the below example, a field of type set
is used to mitigate duplication. A field_serializer
is used to serialize the data as a sorted list.
from typing import Set
from pydantic import BaseModel, field_serializer
class StudentModel(BaseModel):
name: str = 'Jane'
courses: Set[str]
@field_serializer('courses', when_used='json')
def serialize_courses_in_order(self, courses: Set[str]):
return sorted(courses)
student = StudentModel(courses={'Math', 'Chemistry', 'English'})
print(student.model_dump_json())
#> {"name":"Jane","courses":["Chemistry","English","Math"]}
See Custom serializers for more information.
Four signatures are supported:
(self, value: Any, info: FieldSerializationInfo)
(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)
(value: Any, info: SerializationInfo)
(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fields |
str
|
Which field(s) the method should be called on. |
()
|
mode |
Literal['plain', 'wrap']
|
The serialization mode.
|
'plain'
|
return_type |
Any
|
Optional return type for the function, if omitted it will be inferred from the type annotation. |
PydanticUndefined
|
when_used |
Literal['always', 'unless-none', 'json', 'json-unless-none']
|
Determines the serializer will be used for serialization. |
'always'
|
check_fields |
bool | None
|
Whether to check that the fields actually exist on the model. |
None
|
Returns:
Type | Description |
---|---|
Callable[[Any], Any]
|
The decorator function. |
Source code in pydantic/functional_serializers.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
model_serializer ¶
model_serializer(
f: Callable[..., Any] | None = None,
/,
*,
mode: Literal["plain", "wrap"] = "plain",
when_used: Literal[
"always", "unless-none", "json", "json-unless-none"
] = "always",
return_type: Any = PydanticUndefined,
) -> Callable[[Any], Any]
Decorator that enables custom model serialization.
This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields.
An example would be to serialize temperature to the same temperature scale, such as degrees Celsius.
from typing import Literal
from pydantic import BaseModel, model_serializer
class TemperatureModel(BaseModel):
unit: Literal['C', 'F']
value: int
@model_serializer()
def serialize_model(self):
if self.unit == 'F':
return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
return {'unit': self.unit, 'value': self.value}
temperature = TemperatureModel(unit='F', value=212)
print(temperature.model_dump())
#> {'unit': 'C', 'value': 100}
See Custom serializers for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f |
Callable[..., Any] | None
|
The function to be decorated. |
None
|
mode |
Literal['plain', 'wrap']
|
The serialization mode.
|
'plain'
|
when_used |
Literal['always', 'unless-none', 'json', 'json-unless-none']
|
Determines when this serializer should be used. |
'always'
|
return_type |
Any
|
The return type for the function. If omitted it will be inferred from the type annotation. |
PydanticUndefined
|
Returns:
Type | Description |
---|---|
Callable[[Any], Any]
|
The decorator function. |
Source code in pydantic/functional_serializers.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
本文总阅读量次